
www.manaraa.com

Certi�cation Trails for Data StructuresGregory F. Sullivan1Gerald M. Masson2Dwight S. WilsonDept. of Computer Science, Johns Hopkins Univ., Baltimore, MD 21218AbstractCerti�cation trails are a recently introduced and promising approach to fault-detection and fault-tolerance [19]. In this paper, we signi�cantly generalize theapplicability of the certi�cation trail technique. Previously, certi�cation trailshad to be customized to each algorithm application, but here we develop trailsappropriate to wide classes of algorithms. These certi�cation trails are basedon common data-structure operations such as those carried out using balancedbinary trees and heaps. Any algorithm using these sets of operations can there-fore employ the certi�cation trail method to achieve software fault tolerance. Toexemplify the scope of the generalization of the certi�cation trail technique pro-vided in this paper, constructions of trails for abstract data types such as priorityqueues and union-�nd structures will be given. These trails are applicable to anydata-structure implementation of the abstract data type. It will also be shownthat these ideas lead naturally to monitors for data-structure operations.Keywords: Software fault tolerance, certi�cation trails, error monitoring, designdiversity, data structures.1 IntroductionIn this paper we signi�cantly generalize the novel and powerful certi�cation-trail techniquefor achieving fault tolerance in systems that was introduced in [19]. Although applicableto both hardware and software, we restrict our discussion of the certi�cation-trail techniquein the following to software fault tolerance. To explain the essence of the certi�cation-trailtechnique for software fault tolerance, we will �rst discuss a simpler fault-tolerant softwaremethod. In this method the speci�cation of a problem is given and an algorithm to solveit is constructed. This algorithm is executed on an input and the output is stored. Next,the same algorithm is executed again on the same input and the output is compared tothe earlier output. If the outputs di�er then an error is indicated, otherwise the output isaccepted as correct. This software fault tolerance method requires additional time, so-calledtime redundancy [14, 18]; however, it requires no additional software. It is particularlyvaluable for detecting errors caused by transient fault phenomena. If such faults cause anerror during only one of the executions then either the error will be detected or the outputwill be correct. The second possibility, of undetected faults, occurs when the output of theexecution is una�ected by the faults.1Research partially supported by NSF Grants CCR-8910569 and CCR-8908092.2Research partially supported by NASA Grant NSG 1442.1

www.manaraa.com

First Execution

Second Execution

Certification TrailInput

Input

Input

Comparator

Output or Error

Output or Error

Output or ErrorFigure 1: Certi�cation trail method.The certi�cation-trail technique is designed to obtain similar types of error-detection capa-bilities but expend fewer resources. The central idea, as illustrated in Figure 1, is to modifythe �rst algorithm so that it leaves behind a trail of data which we call a certi�cation trail.This data is chosen so that it can allow the the second algorithm to execute more quicklyand/or have a simpler structure than the �rst algorithm. As above, the outputs of the twoexecutions are compared and are considered correct only if they agree. Note, however, wemust be careful in de�ning this method or else its error detection capability might be re-duced by the introduction of data dependency between the two algorithm executions. Forexample, suppose the �rst algorithm execution contains an error which causes an incorrectoutput and an incorrect trail of data to be generated. Further suppose that no error occursduring the execution of the second algorithm. It still appears possible that the executionof the second algorithm might use the incorrect trail to generate an incorrect output whichmatches the incorrect output given by the execution of the �rst algorithm. Intuitively, thesecond execution would be \fooled" by the data left behind by the �rst execution. Thede�nitions we give below exclude this possibility. They demand that the second executioneither generate a correct answer or signal that an error has been detected in the data trail.2 Formal De�nition of a Certi�cation TrailIn this section we will give a formal de�nition of a certi�cation trail and discuss some aspectsof its realizations and uses.De�nition 2.1 A problem P is formalized as a relation, i.e., a set of ordered pairs. Let Dbe the domain (that is, the set of inputs) of the relation P and let S be the range (that is,the set of solutions) for the problem. We say an algorithm A solves a problem P i� for alld 2 D when d is input to A then an s 2 S is output such that (d; s) 2 P.De�nition 2.2 LetP : D! S be a problem. A solution to this problem using a certi�cationtrail consists of two functions F1 and F2 with the following domains and ranges F1 : D !S�T and F2 : D�T! S[ferrorg. T is the set of certi�cation trails. The functions mustsatisfy the following two properties:(1) for all d 2 D there exists s 2 S andthere exists t 2 T such that 2

www.manaraa.com

F1(d) = (s; t) and F2(d; t) = s and (d; s) 2 P(2) for all d 2 D and for all t 2 Teither (F2(d; t) = s and (d; s) 2 P) orF2(d; t) = error.We also require that F1 and F2 be implemented so that they map elements which arenot in their respective domains to the error symbol. The de�nitions above assure that theerror-detection capability of the certi�cation-trail approach is similar to that obtained withthe simple time-redundancy approach discussed earlier. (That is, if transient hardware faultsoccur during only one of the executions then either an error will be detected or the outputwill be correct.) It should be further noted, however, the examples to be considered willindicate that this new approach can also save overall execution time.Observant readers of our earlier paper [19] in which we introduced the notion of a certi�-cation trail might have noticed that our certi�cation-trail solution for the min-spanning treewas generalizable. The generalized technique allows one to generate a certi�cation trail formany algorithms which use a balanced binary tree data structure. However, the techniquerelies on the e�cient execution of the predecessor operation and some data structures suchas heaps cannot execute the predecessor operation e�ciently. The techniques described inthis paper are even more general and powerful, and they do apply to heaps.The degree of diversity or independence achieved when using certi�cation trails dependson how they are used. A fuller discussion of this and of the relationship between certi�cationtrails and other approaches to software fault tolerance is contained in the expanded version of[19]. This current paper presents asymptotic analysis which shows that the certi�cation-trailapproach is desirable even when the overhead of generating the certi�cation-trail is included.We are currently working on an experimental analysis of the method and initial results arequite promising.3 Answer-Validation Problem for Abstract Data TypesOur general approach to applying certi�cation trails uses the concept of an abstract datatype. Some examples of abstract data types are given later in this paper. Here we mentionsome important common properties and give a short illustration. Each abstract data typehas a well de�ned data object or set of data objects, and each abstract data type has acarefully de�ned �nite collection of operations that can be performed on its data object(s).Each operation takes a �nite number of arguments (possibly zero), and some but not alloperations return answers. An example of an abstract data type is a priority queue. Thedata object for a priority queue is an ordered pair of the form (i,k) where i is an item numberand k is a key value. A priority queue has two operations: insert(i,k) and delmin. The insertoperation has two arguments: item number i and key value k. The insert operation does notreturn an answer. The delmin operation has no arguments, but it does return an answer.The precise semantics of these operations are given later in this paper.For each abstract data type we de�ne an answer-validation problem. Intuitively, theanswer validation problem consists of checking the correctness of a sequence of supposedanswers to a sequence of operations performed on the abstract data type. More formally,the input to the answer-validation problem is a sequence of operations on the abstract data3

www.manaraa.com

type together with the arguments of each operation. In addition, the sequence containsthe supposed answers for each of the operations which return answers. In particular, eachsupposed answer is paired with the operation that is supposed to return it. Examples of suchinputs are given in the columns labelled \Operation" and \Answer" of table 1 and table 3.The output for the answer-validation problem is the word \correct" if the answers given inthe input match the answers that would be generated by actually performing the operations.The output is the word \incorrect" if the answers do not match. It is also useful to allowthe output word to say \ill-formed". This output is used if the sequence of operations is ill-formed, e.g., an operation has too many arguments or an argument refers to an inappropriateobject.The answer-validation problem is similar to the idea of an acceptance test which is used inthe recovery-block approach [17, 2] to software fault tolerance. The main di�erence is that ananswer-validation problem is dependent upon a sequence of answers, not just an individualanswer. Hence, if an incorrect answer appears in the sequence, it may not be detectedimmediately. It is guaranteed, however, that an incorrect answer will be detected at somepoint during the processing of the entire sequence. By allowing for this latency in detection,it is possible to create a much more e�cient procedure for solving the answer-validationproblem.In this paper we shall solve the answer-validation problem for two abstract data types.The �rst data type we shall consider is for the disjoint-set union problem, and the seconddata type is for the generalized priority-queue problem. The priority-queue example willbe presented in a sequence of stages, in which each stage allows for more data-structureoperations.The most important aspect of the answer-validation problem is that it is often possibleto check the correctness of the answers to a sequence of operations much more quicklythan actually calculating what the answers should be from scratch. In other words, theanswer-validation problem has a smaller time complexity than the original abstract-data-type problem. For example, to calculate the answers to a sequence of n priority-queueoperations takes
(n log(n)) time, however it is possible to check the correctness of theanswers in only O(n) time. This speedup is very useful in fault-detection applications.It is possible to run an answer-validation algorithm for some abstract data type con-currently with some algorithm which uses the abstract data type. The answer-validationalgorithm could act as a monitor making sure that all interactions with the abstract datatype are handled correctly. This is valuable because many algorithms spend a large fractionof their time operating on abstract data types. Note, the overhead of this monitor is lessthan the overhead of actually performing the data-type operations a second time.One possible application of the answer-validation problem occurs when it is used in con-junction with a repairable data structure which allows for repair but does not automaticallyattempt to detect faults [24]. Suppose an abstract data type is implemented with a re-pairable data structure. One can use an answer-validation procedure to detect errors in theanswers generated by the abstract data type. When an error is detected, a repair of thedata structure can be attempted. In some cases, recovery and continued execution will bepossible.In the next section, we will show how to create certi�cation trails for programs which useabstract data types when those data types have e�cient solutions for their answer-validation4

www.manaraa.com

problems.4 Schema for using Certi�cation TrailsSuppose that we have developed an e�cient solution to the answer-validation problem forsome abstract data type. By e�cient we mean the time complexity of the answer-validationproblem is smaller than the time complexity of the original abstract-data-type problem.Further, suppose that we wish to run an algorithm, say A, which uses that abstract datatype. To apply the certi�cation trail method we can use the following schema to yield thetwo executions:First Execution:Execute algorithm A.Each time an abstract-data-type operation is performed, append to the certi�cation trail theidentity of the operation, the arguments and the answer.Second execution:Phase One:Validate the correctness of the operations and supposed answers given in the certi�cationtrail. If the validation returns \incorrect" or \ill-formed" then output \error" and stop.Otherwise, continue.Phase Two:Execute algorithm A.Each time an abstract-data-type operation is performed, read the next entry in the certi�-cation trail. Make sure that the operation and the arguments in the certi�cation trail agreewith those requested in the algorithm. If not output \error" and stop. Otherwise, use theanswer given in the certi�cation trail and continue.In the �nal step the outputs from the two executions are compared and the output isaccepted or an error is signaled. This schema can yield execution times which are signi�cantlyfaster than the execution time obtained by running algorithm A twice, yet these two methodsgive similar fault detection capabilities. That is, if transient hardware faults occur duringonly one of the executions then either an error will be detected or the output will be correct.Note, the �rst execution can be slower than a simple execution of algorithm A since it mustoutput a certi�cation trail. However, the second execution can be signi�cantly faster thana simple execution of the algorithm since the interactions with the abstract data type takeless time overall. The net e�ect can be a major speedup.Suppose an algorithm uses multiple abstract data types and suppose there are e�cientanswer-validation algorithms for each of these abstract data types. It is easy to see how ourmethod generalizes. We can leave behind a generalized certi�cation trail which consists of aseparate certi�cation trail for each of the abstract data types. The e�ect on the speedup ofthe second execution will be cumulative. 5

www.manaraa.com

1 2 3 4 5 6 7

Figure 2: Union Tree with Find Edges5 Answer Validation for Disjoint-Set UnionAs our �rst example we will discuss the disjoint-set union problem. This problem concernsa dynamic collection of sets in which pairs of sets can be combined to yield new sets. Theunderlying universe of set elements consists of the integers from 1 to n inclusive. Also, theuniverse of set names consists of the integers from 1 to n inclusive. There are three operationsthat can be performed:create(A,x) creates a singleton set named A which contains element x. Since sets must bedisjoint we require that x not already be in some set.union(A,B) creates a new set which is the union of the sets named A and B. This new setis called A and the set named B becomes unde�ned. It is required that the sets named Aand B are originally de�ned and are disjoint.�nd(x) returns the name of the set which contains element x. It is required that x be amember of some unique set.If an operation violates one of the requirements described above then it is considered to beill-formed. Also, if an operation has the wrong number or type of arguments it is consideredto be ill-formed.In table 1 we give an example of a sequence of disjoint-set-union operations together withthe answers for �nd operations. In addition, the collection of sets is depicted as it is changedby the operations. For simplicity, in this example each set name corresponds to the integeroriginally contained in the set when it is created. Sets are listed by �rst giving the name ofthe set followed by a colon and then the contents of the set.The disjoint-set-union problem is a classic problem which has many applications [9] suchas the o�-line min problem, connected components, least-common ancestors, and equivalenceof �nite automata. Of particular interest is the time-complexity of performing a sequence ofoperations. Let us say the total number of operations is m, which is assumed to be greaterthan or equal to n. Recall, n is the number of set elements and set names.Tarjan gave the tight upper bound of O(m�(m;n)) [21, 22] for this problem. The � refersto the inverse of Ackermann's function which is a very slowly growing function. His solution6

www.manaraa.com

Operation Answer Status of setscreate(1,1) 1:f1gcreate(2,2) 1:f1g,2:f2gunion(1,2) 1:f1,2g�nd(2) 1create(3,3) 1:f1,2g,3:f3gcreate(4,4) 1:f1,2g,3:f3g,4:f4gcreate(5,5) 1:f1,2g,3:f3g,4:f4g,5:f5gunion(5,3) 1:f1,2g,4:f4g,5:f3,5gunion(5,1) 4:f4g,5:f1,2,3,5g�nd(2) 5�nd(5) 5create(6,6) 4:f4g,5:f1,2,3,5g,6:f6gunion(4,6) 4:f4,6g,5:f1,2,3,5gcreate(7,7) 4:f4,6g,5:f1,2,3,5g,7:f7gunion(4,7) 4:f4,6,7g,5:f1,2,3,5g�nd(6) 4Table 1: Sequence of operations for a Disjoint Set Unionand earlier solutions used a path-compression heuristic [23]. Fredman and Saks gave a lowerbound of
(m�(m;n)) [10] in a general cell-probe model. Gabow and Tarjan show how tosolve some important special cases of this problem in O(m) time [11].We now consider the answer-validation problem for the disjoint-set-union data type. Wewill show that this problem can be solved in O(m) time wherem is the number of operations.Note, this time complexity is superior to the complexity of actually performing the sequenceof operations as discussed above. One method for solving this problem in O(m) time uses thepowerful techniques of Gabow and Tarjan [11]. However, we shall present a simpler methodwith a small constant of proportionality that is tailored to this problem.To solve this problem we will build a forest based on the union operations in the sequence.In addition, we shall add edges to this forest based on the �nd operations. As a �nal stepwe will perform a traversal of the forest and perform appropriate checks. The solid edges in�gure 2 indicate the forest we would build for the set of operations given in table 1. Thedashed edges indicate the edges we would add to the forest based on the �nd operations.Algorithm for Answer Validation for Disjoint-Set UnionInput: sequence of m operations together with arguments and supposed answers for thedisjoint-set union data type.Output: \correct", \incorrect" or \ill-formed"Declarations: Type treenode has �elds left and right. Type treeleaf contains a list of pointerssuch that each pointer points to a treenode or a treeleaf. Array activeset is indexed by set7

www.manaraa.com

name. Each array element is a pointer to a treenode or a treeleaf. Array whereis is indexedby an element number. Each array element is a pointer to a treeleaf. Initially, all pointersare nil and lists are null.In the �rst phase of the algorithm we process each operation as it appears serially using thefollowing rules:create(A,x): If activeset[A] or whereis[x] are non-nil then output \ill-formed" and stop.Otherwise, allocate a treeleaf and set activeset[A] and whereis[x] to the allocated node.union(A,B): If activeset[A] or activeset[B] are nil then output \ill-formed" and stop. Oth-erwise, allocate a treenode and set left to activeset[A] and right to activeset[B]. Next setactiveset[A] to the treenode and set activeset[B] to nil.�nd(x) A: (where A is the supposed answer to the �nd.) If whereis[x] is nil then output\ill-formed". Otherwise, whereis[x] points to some treeleaf. Call it tleaf. If activeset[A] is nilthen output \ill-formed". Otherwise, activeset[A] points to some treeleaf or treenode. Callit t. Add a pointer to t to the list of pointers contained in treeleaf.In the second phase of the algorithm we shall traverse the structure we have built.Scan thru the array activeset to �nd non-nil pointers. It is not hard to see that each non-nilpointer points to the root of a tree made up of nodes of type tnode and tleaf. The tree usesthe edges in the left and right �elds of tnode.For each such tree perform a depth-�rst search. Whenever the search reaches a node oftype tleaf traverse the list of pointers that it contains. Check that each pointer points to anode which is currently on the stack which is used to perform the depth-�rst search. Thisis equivalent to checking that each pointer in tleaf points to a node which is an ancestor oftleaf in the tree.If some pointer does not point to an ancestor then output \incorrect" and stop. Otherwise,output \correct" and stop.Theorem 5.1 The algorithm for answer validation of the disjoint-set-union abstract datatype is correct.Theorem 5.2 The answer validation algorithm for disjoint set union has a time complexityof O(m) for processing a sequence of m operations.We omit these two theorems which overall are not di�cult to show. We comment onone aspect of implementation. In the second phase of the answer validation algorithm it isnecessary to determine if certain nodes are on the stack during the tree traversal. This canbe done e�ciently as follows: First, each treenode and each treeleaf can be assigned a uniqueidenti�er in the range 1 to m as it is allocated. Next, a boolean vector of size m indexedby the unique identi�ers described above can be allocated. This vector can be used to keeptrack of which nodes are on the stack during tree traversal by turning bits on and o�. Thismodi�ed tree traversal algorithm still takes O(m) time.8

www.manaraa.com

6 Simple Priority QueueIn the next three sections we present four algorithms for answer validation of priority queues.The �rst is a simple, but ine�cient, algorithm that illustrates some of the concepts used inthe second two algorithms. The second algorithm is a linear time algorithm for a simplepriority queue supporting only insert, deletemin, and member operations above. Third is alinear time algorithm for answer validation of a priority queue also supporting delete andchangekey operations. Finally, we show how the third algorithm may be used to constructan algorithm for validating sequences of insert, changekey, delete, min, deletemin, max, anddeletemax operations.In discussing the �rst algorithm, we shall make the simplifying assumption that eachitem number is used at most once. This assumption will be removed when the other twoalgorithms are discussed.6.1 Simple Priority Queue De�nitionA simple priority queue contains (item; value) pairs, where item is an item number from theset [1::N] and value is a member of an arbitrary completely ordered set. At any given time,the pairs in the priority queue have distinct item numbers though the value �eld may be thesame for multiple pairs. It is, however, possible for an item number to be reused. That is,the pair (i; v1) could be added to the priority queue, removed at some later time, and thenthe pair (i; v2) added, where v1 and v2 may or may not be distinct. Pairs are ordered asfollows: (i1; v1) < (i2; v2) i� v1 < v2 or v1 = v2 and i1 < i2. It is not possible for two pairs inthe priority queue at the same time to be equal, since their item numbers must be distinct.The following operations are supported by a simple priority queue:insert(i,v): Adds the pair (i; v) to the priority queue as long as the item number i is notcurrently in use.(i,v) = min(): Returns the smallest pair (i; v) contained in the priority queue.(i,v) = deletemin(): Returns the smallest pair (i; v) in the priority queue and removes itfrom the queue.6.2 A Simple but Ine�cient Answer Validation AlgorithmGiven a sequence of simple priority queue operations, along with answers to the min anddeletemin operations, we wish to check that the answers are correct. This is done by threeclasses of checks.First, technical checks are performed to verify that item numbers are not duplicated andthat the answers given for min and deletemin operations correspond to elements actuallyin the priority queue at the time those operations are performed. We say that the input isill-formed if either of these conditions is violated and that it is well-formed otherwise. Theseconditions are easily veri�ed by a linear scan through the input operations and answers, soin the text below we assume that the input is well-formed.9

www.manaraa.com

To perform the other checks, we �rst associate a time stamp with each operation bynumbering the operations sequentially. The insert time of an element is the time of theinsert operation that placed it in the priority queue. Since we are assuming that itemnumbers are not reused, we may also speak of the insert time of an item number, which isthe insert time of the pair having that item number.Next, we scan the list of operations and create two data structures. The �rst structureis an array, InsertTime, indexed by item number and containing the insert time for everyelement ever placed in the priority queue. The second structure is Answers , a list of triplesof the form (i; v; atime), where (i; v) is the answer given for the operation at time atime. Weform one such answer triple for each min and deletemin operation.We now perform the following check on answers, or more formally on answer triples. Forevery pair of answers, check that either the earlier answer is less than or equal to the laterone, or that the pair given as the later answer was not inserted until after the �rst answerwas returned. Formally, for every pair of answer triples (i1; v1; atime1) and (i2; v2; atime2) inAnswers with atime1 < atime2, we check that (i1; v1) � (i2; v2) or InsertTime[i2] > atime1.If this check fails, then some answer on the input must be incorrect. Assume that all answersgiven before time atime1 are correct. Then the answer (i1; v1) given at atime1 cannot becorrect, because the smaller pair (i2; v2) is in the priority queue at that time. Thus eitherthe answer (i1; v1) at time atime1 is incorrect, or some earlier answer was incorrect.If the priority queue is empty after the operations are executed, these check are su�cient.Otherwise, they generally will not be. Intuitively, if some pair (i; v) is not given as the answerto any min or deletemin operation, then it will not be involved in any of the above checksand we won't detect an error if it should have been then answer to one of the operations.A similar problem exists for a pair (i; v) that is given as the answer to one or more minoperations but not to any deletemin operation. If tlast is the last time (i; v) is given as ananswer, the checks above do not rule out the possibility that (i; v) should be the answer tosome operation occurring after tlast.The �nal set of checks guard against these possibilities. Let Let S be the set of pairsthat are inserted into the queue but never returned as an answer to a deletemin operation.Note that such a pair may have been returned as an answer to a min operation. For eachsuch pair and each answer, we check that either the answer is less than or equal to to thepair, or that the pair was not inserted until after the answer was given. Formally, for eachanswer triple (i1; v1; atime1) and each element (i2; v2) in S, we check that (i1; v1) � (i2; v2)or InsertTime[i2] > atime1. If this check fails, then some answer on the input is incorrect.As above, assume that all answers before time atime1 are correct. Then the answer (i1; v1)given at atime1 is incorrect because the smaller pair (i2; v2) is present in the priority queueat that time.These three sets of checks provide an algorithm for validating the answers of simple priorityqueue operations. A formal proof of the correctness of this algorithm will not be given. Itis similar, though simpler, than the proof we present for the linear time algorithm given inthe following section.The problem with this simple algorithm is that it requires O(n2) checks, and thus takesmore time than well-known priority queue implementations. We now show that not all ofthese checks are required and that by carefully maintaining a subset of answers, a linearnumber of checks will su�ce. 10

www.manaraa.com

6.3 Linear Time Answer ValidationInput: Sequence of priority queue operations (insert, min, deletemin) with answers to minand deletemin operations Output: \correct", \incorrect", or \ill-formed".Variables:CurrentTime A variable indicating which operation is being processed. CurrentTime = nindicates that the n-th operation from the sequence is being processed. Initialized to 1.InsertTime[1::N] InsertTime[i] contains the time of the insert operation that added the pairwith item number i. Each element of this array is initialized to the special value unused.Value[1..N] For each pair (i; v) currently in the queue, Value [i] = v. For all other itemnumbers i, Value [i] is unde�ned.AnswerStack (i; v; atime) where (i; v) is a pair returned by a min or deletemin operationand atime is the time of the operation returning that pair. Our stack structure supports thefollowing operations:isempty(S) Returns true if the stack S is empty and false otherwise.push(S; i; v; atime) Adds the triple (i; v; atime) to the top of the stack S.(i; v; atime) =pop(S) Removes the top triple from the stack and returns it.(i; v; atime) =top(S) Returns the top triple without removing it from the stack.We will frequently speak of one stack element (i1; v1; atime1) being \above" or \be-low" another element (i2; v2; atime2). (i1; v1; atime1) above (i2; v2; atime2) means that itis closer to the top of the stack, i.e., that (i2; v2; atime2) was already on the stack when(i1; v1; atime1) was pushed. (i1; v1; atime1) below (i2; v2; atime2) means that (i2; v2; atime2)is above (i1; v1; atime1). The terms \immediately above" and \immediately below" meanthat there are no stack elements between them. We may drop the word \immediately" if itis clear from the context).Finally, we de�ne the result of comparison two stack triples as follows: (i1; v1; atime1) <(i2; v2; atime2) i� (i1; v1) < (i2; v2) or (i1; v1) = (i2; v2) and atime1 < atime2. This orderinghas independent of the order of triples on the stack. Furthermore, the third �eld will alwaysbe di�erent for di�erent triples (since each operation produces at most one triple), andtherefore two triples will never be equal.We now describe and present pseudo-code for the steps performed by the answer validationalgorithm. The validation precedes in two phases. During the �rst phase, the input opera-tions and answers read, and the associated routines below are executed. Between operations,the CurrentTime variable is incremented. After all operations are complete, the FinalPhaseprocedure is executed. Table 2 provides an example of these routines. The top of the stackis on the left in table 2.insert(i,v): Check whether the item number i is currently in use. If so, the input is ill-formed and we halt immediately. If not, set InsertTime[i] to CurrentTime and Value [i] tov. 11

www.manaraa.com

Time Operation Answer Insert time Stack used in validation1 insert(6,300)2 insert(2,404)3 insert(3,250)4 deletemin (3,250) 3 (3,250,4)5 insert(10,248)6 insert(12,245)7 insert(4,260)8 min (12,245) 6 (12,245,8), (3,250,4)9 insert(13,140)10 insert(5,142)11 deletemin (13,140) 9 (13,140,11), (12,245,8), (3,250,4)12 deletemin (5,142) 10 (5,142,12), (12,245,8), (3,250,4)13 deletemin (12,245) 6 (12,245,13),(3,250,4)14 deletemin (10,248) 5 (10,248,14),(3,250,4)15 deletemin (4,260) 7 (4,260,15)Table 2: Sequence of Priority Queue operations illustrating answer validation algorithminsert(i,v) /* (i; v) is the pair to insert */f if (InsertTime[i] 6= unused) output \ill-formed" and haltInsertT ime[i] = CurrentTimeV alue[i] = vg(i,v) = min(): First check if InsertTime[i] is set to unused and if Value[i] is not equal to v.If either of these is the case, the input is ill-formed and we halt. Otherwise, pop elementso� the top of the stack until (i; v;CurrentTime) is less than the top stack element (it ispossible that no elements are popped). If the stack is empty, push (i; v;CurrentTime) ontothe stack. Otherwise let (i2; v2; atime2) be the top stack element and compare atime2 withinsertion time of (i; v). If (i; v) was inserted before atime2 output \incorrect" and halt (inthis case, the answer (i2; v2) was returned while the smaller element (i; v) was in the queue).Otherwise, push (i; v;CurrentTime) onto the stack.min(i,v) /* (i,v) is the answer given in the input for this min */f if (InsertTime[i] = unused or Value [i] 6= v)output \ill-formed" and haltwhile (not empty(AnswerStack)) f(i2; v2; atime2) = top(AnswerStack)12

www.manaraa.com

if (i; v; CurrentT ime)> (i2; v2; atime2)pop(AnswerStack)else if (InsertTime[i] < atime2) output \incorrect" and halt (1)else exit while loopgpush(AnswerStack ; i; v;CurrentTime)g(i,v) = deletemin(): We perform the same operations as for min, and in addition setInsertTime[i] to unused.deletemin(i,v) /* (i,v) is answer */f min(i,v)InsertTime[i] = unusedg In the �nal phase, we examine the elements remaining in queue, i.e., those for whichInsertTime[i] 6= unused . For each such pair (i; v) form the triple (i; v; InsertTime[i]). Usebucket sort to order these triples by insertion time in linear time, and call the resultinglist SOrdered. Pop the remaining stack elements and place them in a list sorted by answertime. Call this list AOrdered. Compare each triple (i1; v1; InsertTime[i1]) in SOrdered withthe the triple (i2; v2; atime2) in AOrdered having the smallest atime2 such that atime2 >InsertTime[i1]. If (i1; v1) < (i2; v2) then output \incorrect" and halt. If (i1; v1) � (i2; v2)for all pairs compared, then output \correct". Note that since SOrdered and AOrdered aresorted by the time �eld, the comparisons may be performed in linear time by marching downboth lists in parallel.FinalPhase() /* executed after all operations have been performed */f S = Set of triples (i1; v1; InsertTime[i1]) for each item number i1where InsertTime[i1] 6= unusedSOrdered = S sorted by the third �eld (insertion times)AOrdered = triples (i2; v2; atime2) remaining on the stack in order of atime2.For each triple (i1; v1; InsertTime[i1]) in SOrdered fLet (i2; v2; atime2) be the triple from AOrdered withthe smallest answer time such that atime2 > InsertTime[i1]If no such triple exists, examine the next triple from SOrdered.else if (i1; v1) < (i2; v2) (2)then output \incorrect" and halt.else continue 13

www.manaraa.com

goutput \correct"g The following lemma lists three properties of AnswerStack that are maintained by theabove operations. These properties are used to prove the correctness of the answer validationalgorithm.Lemma 6.1 The following stack properties are maintained throughout the algorithm. We1. The answer time �eld of stack triples are in strictly decreasing order from the top tothe bottom of the stack.2. Let (i1; v1; atime1) and (i2; v2; atime2) be two adjacent stack triples with (i1; v1; atime1)immediately above (i2; v2; atime2). Then (i1; v1; atime1) < (i2; v2; atime2). More generally,the stack triples are in strictly increasing order from the top to the bottom of the stack.Furthermore, since the answer time �elds are in decreasing order, this implies that the pairsformed by the �rst two elements of each element are in strictly increasing order. Note thatthis implies that for any given pair (i; v), there is only one stack triple with item number iand value v. This triple will have an answer time �eld equal to the number of the most recentmin or deletemin operation with answer (i; v).3. Let (i1; v1; atime1) and (i2; v2; atime2) be two adjacent stack triples with (i1; j1; atime1)above (i2; j2; atime2). Let tins be the insert time for the instruction that inserted the pair(i1; j1) corresponding to the stack triple (i1; v1; atime1). (Recall that if (i1; j1) has been in-serted multiple times, this corresponds to the last instance such insertion before the cur-rent time. Also note that if this instance of (i1; j1) is still in the priority queue, thentins = InsertTime[i1]). Then tins > atime2.Proof: The �rst property is clear because when an element is added to the stack, thevalue of CurrentTime is greater than the answer time of any element on the stack. Sinceelements may only be added to the top of the stack, answer times must decrease from thetop to the bottom of the stack.The second property is trivially true for a stack with fewer than two triples, and is thereforetrue at the start of the algorithm.Suppose that the stack has this property before a min or deletemin operation is performed.Let (i1; v1; atime1) be the answer triple for that operation. Let (i2; v2; atime2) be the smalleststack triple s.t. (i1; v1; atime1) < (i2; v2; atime2). If there is no such element, then allstack triples will be popped by the min or deletmin operation and (i1; v1; atime1) pushed,in which case the property remains true. Otherwise, all triples above (i2; v2; atime2) willbe popped, since by assumption they are all smaller than this triple, and hence smallerthan (i1; v1; atime1). Similarly, all triples below (i2; v2; atime2) are greater than it are instrictly increasing order. Therefore when the elements above (i2; v2; atime2) are popped and(i1; v1; atime1) is pushed, the ordering of the triples is maintained.Since the answer time of the triple being pushed on the stack is larger than that of any stacktriple, if there is a triple (i1; v1; atime2), then that triple will is smaller than (i1; v1; atime1),so it is popped. Thus, only one triple with item i1 and value v1 will be on the stack, and theanswer time �eld corresponds to the most recent operation returning that pair.14

www.manaraa.com

Property 3 is checked by min and deletemin operations when a triple (i1; v1; atime1) is �rstpushed on the stack. Since triples may only be added to the top of the stack, and no elementin the stack may be modi�ed, this property is maintained throughout the algorithm. Notethat InsertTime[i1] may change if the pair (i1; v1) is removed from the priority queue anda new pair with item number i1 is inserted. This is not important, since checks involvingstack triple (i1; v1; atime1) do not depend on InsertTime[i1]. Note that InsertTime[i1] maybe examined if the other pair involved in such a comparison also has item number i1. Thisdoes not cause problems since only one pair with item number i1 can be in the priority queueat any time. InsertTime[i1] will be valid for that pair, and the insert time of any earlier pairwith item number i1 is not used in any check.Theorem 6.2 The algorithm for answer validation of the simple priority queue terminateson all input. It outputs \correct" if the answers on the input are correct and \incorrect" or\ill-formed" if they are not.Proof: The proof is in two parts:Part I: Suppose the answers given in the input are correct.First we must check that each operation successfully executes. The checks against InsertTime[],and Value [] are technical checks that verify that the item numbers used by insert operationsare not already in use and that the pairs given as answers are actually in the priority queueat the time the associated operations are performed. These checks will clearly succeed if theanswers given on the input are correct.Therefore, only min or deletemin operations can fail, and only if the check given at (1)in the pseudocode for min fails. Let (i1; v1) and (i2; v2) be any two answers from the inputsequence and let (i1; v1; atime1) and (i2; v2; atime2) be the associated answer triples. WLOG,assume atime1 > atime2. Let tins = InsertTime [i1] at time atime1, i.e., the largest insertiontime of pair (i1; v1) less than atime1. Then either (i1; v1; atime1) � (i2; v2; atime2) or tins >atime2. If not, then (i1; v1) < (i2; v2) and (i1; v1) was present in the priority queue at timeatime2. But this contradicts the assumption that (i2; v2) is the correct answer at atime2.Since this is true for any two answer in the sequence, the check given at (1) cannot fail if allthe answers are correct.The same argument shows that the check at (2) in FinalPhase will also always succeed ifall answers are correct. It is clear from the pseudocode that processing of each priority queueoperation terminates and also that the FinalPhase routine terminates, thus the algorithmwill terminate and output \correct".Part II: Assume that there is at least one incorrect answer in the input. Then we showthat the algorithm will output \incorrect" or \ill-formed".Again, the initial checks in min and insert against InsertTime[] and Value [] will catch anattempt to use an item number currently in use or to return a pair that is not currently inthe priority queue. If this happens \ill-formed" will be output. Thus, we may assume thatthe input is well-formed.As a point of clari�cation, when we refer to the \answer" of an operation we mean theanswer given in the input for that operation. The term \correct answer" refers to the answerthat would be given by a correct execution of the operations. An \incorrect answer" is ananswer on the input that is not a correct answer.15

www.manaraa.com

Let twrong be the time of the �rst operation for which an incorrect answer is given. Let(i1; v1) be the pair that is the correct answer to that operation. Since all previous answersare correct, we know that (i1; v1) is smaller than the incorrect answer given.Let tins be the largest time for any insert(i1,v1) instruction with tins < twrong , i.e., theinsertion corresponding to the instance of (i1; v1) that is in the priority queue at time twrong.Let tdel be the �rst deletemin operation after time twrong with an answer of (i1; v1). If thereis no such operation, then tdel = in�nity .Let (i2; v2; atime2) be the largest answer triple occurring with tins < atime2 < tdel , i.e.,(i2; v2) is the largest answer that is returned while (i1; v1) is in the priority queue. We knowthat (i2; v2) > (i1; v1) because (i2; v2) is at least as large as the incorrect answer returnedat time twrong . Finally, note that the pair (i2; v2) may be given as answer more than oncebetween times tins and tdel . Since we have selected the largest answer triple, it correspondsto the last time (i2; v2) was given as an answer during that interval.We will now show that either check done at (1) or the check done at (2) must eventuallyfail. There are two cases, depending on whether or not (i1; v1) is given as answer.Case 1: Suppose that (i1; v1) is given as the answer to some operation occurring betweensome time atime1 > atime2 This could be the result of a min operation, so this case mayapply even if tdel = in�nity . Clearly atime1 � tdel .At time atime1 the triple (i2; v2; atime2) must be in the answer stack. This is becauseit was placed on the stack at time atime2 and no larger element has been returned as ananswer between atime1 and tdel . Suppose that (i2; v2; atime2) is actually the topmost stackelement after popping any triples smaller than (i1; v1; atime1). Then check (1) will fail sinceInsertTime[i1] = tins < atime2.Otherwise, let (i3; v3; atime3) be the topmost element of the stack after popping. Thenstack property 1 implies that atime2 < atime3, so InsertT ime[i] = tins < atime2 < atime3,so once again check (1) fails.There is an interesting subtlety at this point. We have identi�ed a speci�c comparisonthat will fail, however there is no guarantee that the algorithm will actually reach thiscomparison. It is possible that some earlier comparison will have failed, stopping executionof the algorithm. What we can say is that if the algorithm reaches this comparison, thenit will fail. If it does not reach this comparison, it must be because an earlier comparisonfailed. In either case, the algorithm will output \incorrect" and halt.Case 2: (i1; v1) is not given as answer after time atime2.Then (i1; v1) must be in the priority queue after all operations are complete because there isno deletemin after time tins with (i1; v1) as its answer. This means that the triple (i1; v1; tins)will be in the list of remaining elements considered during FinalPhase. The same reasoningas in Case 1 implies that (i2; v2; atime2) will be in AnswerStack after all operations areexecuted.Now let, (i3; v3; atime3) be the smallest triple remaining in AnswerStack that is larger than(i1; v1; tins). Then, if (i3; v3) 6= (i2; v2) the triple (i3; v3; atime3) must be above (i2; v2; atime2)in the stack, so atime3 � atime2The triples (i1; v1; tins) and (i3; v3; atime3) will fail check (2) in FinalPhase, since (i1; v1) <(i3; v3) and InsertTime[i] = tins < atime2 < atime3.As in the �rst case, we cannot guarantee that the comparisons considered above will everbe reached. If they are not, it can only be because an earlier comparison failed, ending the16

www.manaraa.com

algorithm.Thus, the FinalPhase routine will output \incorrect" and halt.7 Priority Queue7.1 Priority Queue De�nitionA priority queue is similar to the simple priority queue structure described previously. Inaddition to the insert, min, and, deletemin operations, an operation delete(i) which removesthe pair with item number i is supported. This operation fails if there is no such elementcurrently in the priority queue. This structure also supports the operation changekey(i,w).This operation �nd the pair (i; v) with and changes its value �eld to w. Since this operationmay be implemented as a delete(i) followed by an insert(i,w), we need not considered it inthe material below.7.2 Answer validation algorithmInput: Sequence of operations with answers to min and deletemin operations Output: \cor-rect", \incorrect", and \ill-formed" Variables:CurrentTime: Same as for the simply priority queue.InsertTime[1::N]: Same as for the simply priority queue.Value [1::N] Same as for the simply priority queue.AnswerStack AnswerStack is similar to the variable of the same name in the previous algo-rithm, but somewhat more complex. This stack consists of quadruples (i; v; atime; s), wherei, v, and atime are the same as in the previous algorithm, and s is a set of item numbers.In addition to the stack operations described above, we require the operations:(i; v; atime; s) = find(i) Finds the stack element whose set s contains the pair with itemnumber i.istop((i; v; atime; s)) Returns true i� the argument is the top element of the stack.(i2; v2; atime2; s2) = up((i1; v1; atime1; s1)) Returns the stack element immediately above(i1; v1; atime1; s1).add((i1; v1; atime1; s1); i2) adds the item number i2 to the set s1.remove(i) Removes i from the set s containing it. Note that s is not an argument to thisoperation.An e�cient implementation need not store the actual set in the stack element (a pointerto the set su�ces) but the explanation is simpli�ed if we describe sets as being part of thestack elements. 17

www.manaraa.com

Time Operation Answer Insert time Stack Used in validation1 insert(5,310) (0,-1,-1,f5g)2 insert(6,210) (0,-1,-1,f5,6g)3 insert(8,280) (0,-1,-1,f5,6,7g)4 min (6,210) 2 (6,210,4,f5,6,8g)5 insert(9,190) (6,210,4,f5,6,8,9g)6 min (9,190) 5 (9,190,6,;), (6,210,4,f5,6,8,9g)7 insert(2,275) (9,190,6,f2g), (6,210,4,f5,6,8,9g)8 delete(8) 3 (9,190,6,f2g), (6,210,4,f5,6,9g)9 insert(12,170) (9,190,6,f2,12g), (6,210,4,f5,6,9g)10 insert(14,400) (9,190,6,f2,12,14g), (6,210,4,f5,6,9g)11 deletemin (12,170) 9 (12,170,11,;), (9,190,6,f2,14g), (6,210,4,f5,6,9g)12 insert(3,290) (12,170,11,f3g), (9,190,6,f2,14g), (6,210,4,f5,6,9g)13 insert(7,330) (12,170,11,f3,7g), (9,190,6,f2,14g), (6,210,4,f5,6,9g)14 insert(15,200) (12,170,11,f3,7,15g), (9,190,6,f2,14g), (6,210,4,f5,6,9g)15 delete(9) 5 (12,170,11,f3,7,15g), (9,190,6,f2,14g), (6,210,4,f5,6g)16 deletemin (15,200) 14 (15,200,16,f2,3,7,14g), (6,210,4,f5,6g)17 delete(7) 13 (15,200,16,f2,3,14g), (6,210,4,f5,6g)18 deletemin (6,210) 2 (6,210,18,f2,3,5,14g)19 delete(14) 10 (6,210,18,f2,3,5g)20 deletemin (2,275) 7 (2,275,20,f3,5g)21 deletemin (3,290) 12 (3,290,21,f5g)22 deletemin (5,310) 1 (5,310,1,;)Table 3: Sequence of Priority Queue operations illustrating answer validation algorithmInitially, AnswerStack contains the single quadruple (0;�inf ;�1;null), where (0;�inf)is guaranteed to be smaller than any pair.We now describe and present pseudo-code for the answer validation algorithm. As forthe previous algorithm, this consists of routines for each data structure operation and aFinalPhase routine. The variable CurrentTime is incremented after each operation. Anexample of these routines is presented in table 3.insert(i,v): This is the same as the previous insert algorithm with the additional step ofadding i to the set s belonging to the top stack element.insert(i,v) /* (i; v) is the pair to be inserted */f if (InsertTime[i] 6= unused) output \ill-formed" and haltInsertTime[i] = CurrentTimeValue [i] = vadd(top(AnswerStack), i)g(i,v) = min(): Perform the same steps as for the previous algorithm. In addition, take the18

www.manaraa.com

union of the sets contained in stack elements that were popped of the stack and assign thisto the fourth element of the quadruple pushed on the stack.min(i1,v1) /* (i1; v1) is the answer given in the input for this min */f if (InsertT ime[i1] = unused or Value [i1] 6= v)output \ill-formed" and halts1 = nullwhile (not empty(AnswerStack)) f(i2; v2; atime2; s2) = top(AnswerStack)if (i1; v) � (i2; v2)pop(AnswerStack)s1 = s1 union s2else if (InsertT ime[i1] < atime2) output \incorrect" and halt (1)else exit from while loopgpush(AnswerStack, i, k, CurrentTime, s')g(i,v) = deletemin: We perform the same operations as for min. In addition, we removethe item number i from the set containing it and set InsertTime[i] to unused.deletemin(i,v) /* (i,v) is answer */f min(i,v)remove(i)InsertTime[i] = unusedgdelete(i1): First, check that there is a pair (i1; v1) in the priority queue. If not, output \ill-formed" and halt. Otherwise, let (i2; v2; atime2; s2) be the stack element with s2 containingi1. Remove i1 from s2. Now, if the pair (i1; v1) is smaller than (i2; v2) check that it wasn'tinserted until after the answer (i2; v2) was given. If not, output \incorrect" and halt. Next,if (i2; v2; atime2; s2) is the top stack element we are done. Otherwise let (i3; v3; atime3; s3)be the element immediately above (i2; v2; atime2; s2). If (i1; v1) is smaller than (i3; v3) weoutput \incorrect" and halt. Otherwise the operation succeeds.delete(i1)f if (InsertTime[i1] = unused) output \ill-formed" and haltv1 = Value [i1] 19

www.manaraa.com

(i2; v2; atime2; s2) =�nd(i1)remove(i1)if atime2 > InsertTime[i1] and (i1; v1) < (i2; v2) (2)output \incorrect" and haltif atime2 < InsertT ime[i1] and !istop((i2; v2; a2; s2)) f(i3; v3; a3; s3) =up(i2,v2,a2,s2)if (i1; v1) < (i3; v3) output \incorrect" and halt (3)ggFinalPhase() /* executed after all operations have been performed */f Form triples (i1; v1; InsertTime[i1]) for each pair remaining in the queue.RemainderList = these triples sorted by InsertTime[i]For each (i2; v2; atime2; s2) on AnswerStack fIf there is an (i1; v1; InsertTime[i1]) on RemainderList s.t.InsertTime[i1] < atime2 and(i1; v1) < (i2; v2) then output \incorrect" and halt (4)goutput \correct"g7.3 Stack PropertiesLemma 7.1 The three properties from before still hold. In addition the following propertieshold:4. The union of the sets in the stack consists of the set of item numbers of pairs in thepriority queue.5. Given adjacent stack elements (i1; v1; atime1; s1) above (i2; v2; atime2; s2), for any i3 ins2, InsertTime[i3] < atime1. For any i3 in s1, InsertTime[i3] > atime2.Proof:The proof from the previous section applies to the stack in this algorithm and demonstratesthe three previous properties.Property 4 is easy to demonstrate. An insert instruction adds the appropriate item numberto the top element. A delete or deletemin removes the appropriate item number from itscontaining set. A min or deletemin operation that pops stack elements will push a stackelement with a set consisting of the union of popped sets, so the union of all sets on thestack does not change.Consider the �rst part of property 5. There are two ways that i3 could have been placedin s2. First, the pair (i3; v3) could have been inserted while (i2; v2; atime2; s2) was the topelement, or s2 could have initially been formed by the union of sets, one of which contained20

www.manaraa.com

i3. In either case, there is some time t that is the earliest at which (i2; v2; atime2; s2) was thetop stack element and i3 was in s2. Note that a stack element that is not the top of stack cannever become the top of stack since the only operations that remove elements from the stackare min and deletemin and they end by pushing a new quadruple. Thus (i1; v1; atime1; s1)must have been pushed onto the stack at some time after t, since eventually it is immediatelyabove (i2; v2; atime2; s2). Therefore InsertT ime[i3] < atime1.The second part of property 5 is simpler. Item numbers may only be placed in the seton top of the stack (either by inserting into an existing set or from a merge forming anew set). Thus i3 was either added to s1 when (i1; v1; atime1; s1) was already top of thestack, or it was placed in s1 during the operation that pushed (i1; v1; a1; s1). In the formercase we have InsertTime[i3] > atime1 > atime2. In the latter case, some stack element(i4; v4; atime4; s4) was originally on the top of the stack at time InsertT ime[i3] and musthave been above (i2; v2; atime2; s2) (thought not necessarily immediately above it). ThusInsertTime[i3] > atime4 > atime2. In either case case the second half of property 5 holds.7.4 Proof of correctnessTheorem 7.2 Theorem: The algorithm for answer validation of the priority queue termi-nates on all input. It outputs \correct" if the answers on the input are correct and \incorrect"or \ill-formed" if they are not.Proof: Clearly the algorithm terminates since each of the routines given above terminates.The initial checks against InsertTime[] and Value [] detect ill-formed input, so we will assumethat the input is well formed.Part 1: First we must show that if the input answers are correct, then the algorithm willoutput \correct".We now check that min, deletemin, and delete operations do not fail on correct input.The checks given for min and deletemin are the same as for the simple priority queue, sothe same reasoning implies that they will not fail. Examine check (2) in the delete routine.(i1; v1) is the pair being deleted (i2; v2; atime2; s2) is he stack element s.t., s2 contains (i1; v1),which must exist by stack property 4. We return \incorrect" if atime2 > InsertTime[i1] and(i1; v1) < (i2; v2). But this means that (i2; v2) was incorrectly given as an answer at timeatime2 since the smaller pair (i1; v1) was present in the priority queue at that time. Thereforethis check cannot fail if all the answers are correct. Examine check (3). Let (i3; v3; atime3; s3)be the stack element directly above (i2; v2; atime2; s2), which must exist since we do notperform check (3) if (i2; v2; atime2; s2) is the top element. The check returns \incorrect" if(i1; v1) < (i3; v3).By stack property 5, InsertTime[i1] < atime3. This if this check fails, the answer (i3; v3)given at atime3 is incorrect since the smaller pair (i1; v1) is in the priority queue at thattime.Finally, the FinalPhase routine is identical to that for the simple priority queue, so thesame argument shows that check (4) cannot fail.Part 2: Now we must prove that the if any input answers are not correct, the algorithmwill output \ill-formed" or \incorrect". 21

www.manaraa.com

Again, the initial checks against InsertTime[], and Value [] check for ill-formed input, sowe may assume that the input is well-formed.The proof is similar to the earlier proof. Let twrong be the time of the �rst operation withan incorrect answer. Let (i1; v1) be the pair that is the correct answer for that operation.Let tins be the time of the last insert(i1,v1) operation occurring before twrong Let tdel be thetime of the �rst delete(i1) operation or deletemin operation with answer (i1; v1) occurringafter twrong . If there is no such operation, let tdel = in�nity . Then during our execution ofthe answer validation algorithm, (i1; v1) is marked as being in the queue between times tinsand tdel . Note that in a correct execution of the operations this might not be the case.Let (i2; v2; atime2) be the largest answer triple occurring with tins < atime2 < tdel . Weknow that (i2; v2) > (i1; v1) because it (i2; v2) is at least as large as the incorrect answergiven at time twrong . There may be several operations during that time period that return(i2; v2), but our ordering on triples guarantees that we pick the last such operation.There are now three cases, the �rst two of which are identical to the simple priority cases.Case I: (i1; v1) returned as an answer at some time atime1 > atime2. This case is identicalto case I for simple priority queues.Case II: (i1; v1) is not deleted and is never returned as an answer. This is identical to caseII for simple priority queues.Case III: (i1; v1) is not returned as answer before or at time tdel , but is deleted from thepriority queue at time tdel . Note that some another instance (i1; v1) could be inserted andreturned as an answer after tdel . This is irrelevant.At time tdel , (i2; v2; atime2; s2) must be on the stack, since it is the largest answer triplewith time larger than tins.If i1 is in s2 then check (2) will fail, i.e., cause \incorrect" to be output, since (i1; v1) <(i2; v2).If not, let (i3; v3; atime3; s3) be the stack element s.t. i1 is in s3. InsertTime[i1] < atime2,so this stack element must be below (not necessarily immediately below) (i2; v2; atime2; s2),for otherwise stack property (5) would require InsertTime[i1] > atime2. Suppose check (2)succeeds, that is, does not cause \incorrect" to be output. Then either InsertT ime[i1] >atime3 or (i3; v3) < (i1; v1). However (i3; v3) > (i2; v2) by stack property 2, so we must haveInsertTime[i1] > atime3, in which case check (3) will be performed.Let (i4; v4; atime4; s4) be the stack element immediately above (i3; v3; atime3; s3), whichmust exist since (i2; v2; atime2; s2) is above (i3; v3; atime3; s3).Then we have InsertTime [i1] < a4, by stack property 5, but (i1; v1) < (i2; v2) < (i4; v4) bystack property 2, so check (3) will fail.There is an important subtlety in the above theorem. We have not shown that all priorityqueue operations were correctly performed, only that the answers given are the same as thosethat would have been given if all operations had been correcty performed. In particular, sincedelete operations do not return answers, it is possible that a delete operation removed thewrong element during the original execution of operations. If that error does not a�ect theanswers to the other operations, we will not detect it.Note also that we could de�ne the delete the operation to return the pair being deleted. Itis trivial to modify the procedure for delete in the above algorithm to validate those answers.22

www.manaraa.com

8 Generalized Priority QueueWe can de�ne max and deletemax operations analogous to the min and deletemin operationsde�ned previously. A generalized priority queue is a structure supporting the priority queueoperations de�ned in the previous section and the operations max and deletemax. As before,the changekey(i,w) operation may be implemented as a delete(i) followed by an insert(i,w)so for simplicity we do not consider it in the material below.It is obvious that the technique in the preceding section provides linear time validationfor the operations insert, delete, max, and deletemax. We now show how to validate thegeneralized priority queue operations.De�nition 8.1 Consider a sequence of generalized priority queue operations together withthe supposed answers. Based on this sequence we derive a new sequence of operations calledthe minimum sequence. This sequence is derived from the original sequence by:i. Removing every max operation and the corresponding answer.ii. Replacing every deletemax operation and corresponding answer by a delete(i) opera-tion, where i is the item number given in the answer to the deletemax operation.Every other operation from the original sequence is copied to the minimum sequence withoutchange. We say that two operations, O1 the original sequence and O2 from the minimumsequence, are corresponding operations ifi. The operation O1 is a deletemax operation, O2 is a delete operation, and O2 was createdfrom O1 by the replacement rule given above. OR,ii. O1 and O2 are the same operation, with the same arguments but not necessarily thesame answer, and O2 is the unchanged copy of O1.The maximum sequence is de�ned analogously.Theorem 8.2 Let S be a sequence of generalized priority queue operations with supposedanswers. Let Smin and Smax be the minimum and maximum sequences, respectively. Thenthe answers in S are correct i�, the answers on both Smin and Smax are correct.Proof:Let Pi be the set of elements in the priority queue after correct execution of the �rst ioperations in S. Similarly, de�ne Pmin;i and Pmax ;i for the sequences Smin and Smax . We shallshow that if O1 and O2 are corresponding operations in S and Smin , then PO1 and Pmin;O2contain the same elements. The same statement is true for corresponding operations in Sand Smax .Suppose that this is true for all operation before O1 in S and the corresponding operationO2 in Smin . The ifO1 is an insert operation, O2 will insert the same element so the two queueswill still store identical sets. Similarly if O1 and O2 are corresponding deletes or deletemins,the same element will be deleted from each queue. Finally, ifO1 is a deletemax operation, thederivation of Smin guarantees that the same element is removed by the corresponding delete23

www.manaraa.com

operation O2. No other operations change the contents of the queues, so we have shown thatPO1 and Pmin;O2 contain the same elements. The proof for S and Smax is analogous.Now, suppose that the answers given in S are correct. This means that they are the answerthat would be given by a correct execution of the operations in S. Since PO1 and Pmin;O2contain the same elements after corresponding operation O1 and O2, the correct answers tocorresponding min and deletemin operations must be the same. Thus, the answers on thesequence Smin are correct. Similarly for Smax .Now, suppose that the answers on both Smin and Smax are correct. We must show thatthe answers given in S are correct. We know that PO1 and Pmin;O2 contain contain the sameelements after corresponding operations O1 and O2. Similarly PO1 and Pmax ;O3 contain thesame elements after corresponding operations O1 and O3.Suppose that the answers in S are correct up to operation O1. We may assume that O1is a min, max, deletemin, or deletemax operation since the other operations do not returnanswers. Suppose O1 is a min or deletemin operation. Since the priority queues PO1�1 andPmin;O2�1 contain the same elements, the correct answer for both min operations must bethe same. Therefore the answer given in S for O1 is correct because it is the same as theanswer given in Smin for O2.Similarly, if O1 is a max or deletemax operation, then the priority queues associated withS and Smax will contain the same elements before O1 and the corresponding operation O3.The correct answers to those operations must therefore be the same, so the answer given inS is correct.Therefore all answers given in S are correct.Note that neither of the sequences Smin nor Smax is su�cient by itself.Corollary 8.3 The set of answers to generalized priority queue operations (insert, delete,min, deletemin, max, deletemax) may be validated in linear time.Proof: Clearly the minimum and maximum sequences can be formed in linear time. Thealgorithm in the preceding section may be used to validate the answers in the minimum andmaximum subsequences in linear time.9 Experimental ResultsIn this section we evaluate the use of certi�cation trails for data structures as applied tofour well-known and signi�cant problems in computer science: sorting, the shortest pathtree problem, the Hu�man tree problem, and the skyline problem. We have implementedbasic algorithms for these problems and applied the techniques described in Section 4 toimplement algorithms which generate and use certi�cation trails. Timing data was collectedusing a SPARCstation ELC running SunOS 4.1.The timing information reported in the tables consists of the run time of the basic al-gorithm (i.e., no certi�cation trail), the run time of the trail-generating algorithm, the runtime of the trail-using algorithm, the percentage savings of using certi�cation trails, andthe speedup achieved by the second phase of the certi�cation trail method. The percentage24

www.manaraa.com

savings is computed by comparing the total run time of algorithms for generating and us-ing trails against twice the run time of the basic algorithm. The speedup is computed bydividing the run time of the basic algorithm by the run time of the algorithm that uses thecerti�cation trail.Apart from the data structures, the implementation of both phases of the certi�cation trailversion of each algorithm is nearly identical to the implementation of the basic version. Theonly di�erence in the code for the two phases is a parameter passed to the data structure codeindicating whether a certi�cation trail should be generated or used. All code implementingthe certi�cation trails is localized to the modules implementing the data structures, allowingthe generation and use of the trail to be transparent to the user of these modules. Due tospace constraints only an abbreviated discussion of the algorithms is given.9.1 HeapsortSorting is a fundamental operation in computer systems, and there exist several sortingalgorithms. Sorting may be implemented with a priority queue (or more speci�cally, a heap)by inserting all elements and performing deletemin operations until the queue is empty.Input data was generated by creating sets of integers chosen uniformly from the interval[0; 10000000]. Timing results are based on �fty executions at each input size.Size Basic Algorithm First Execution Second Execution Speedup Percent(Also Generates Trail) (Uses Trail) Savings10000 0.44 0.45 0.11 4.00 36.3620000 0.98 1.00 0.23 4.26 37.2450000 2.71 2.80 0.60 4.52 37.27100000 5.87 6.05 1.23 4.77 37.99200000 12.71 12.91 2.47 5.15 39.50300000 19.67 20.25 3.73 5.27 39.04Table 4: Heapsort9.2 Hu�man TreeGiven a sequence of frequencies (positive integers), we wish to construct a Hu�man tree, i.e.,a binary tree with frequencies assigned to the leaves, such that the sum of the weighted pathlengths is minimized. This is a classic algorithmic problem and one of the original solutionswas found by Hu�man [13]. It has been used extensively in data compression algorithmsthrough the design and use of so called Hu�man codes. The tree structure and code designare based on frequencies of individual characters in the data to be compressed. In this paperwe are concerned only with the Hu�man tree, the interested reader should consult [13] forinformation about the coding application.The Hu�man tree is built from the bottom up and the overall structure of the algorithmis based on the greedy \merging" of subtrees. An array of pointers, ptr, is used to point25

www.manaraa.com

to the subtrees as they are constructed. Initially, n single vertex subtrees are constructed,each one associated with a frequency number in the input. The algorithm repeatedly mergesthe two subtrees with the smallest associated frequency values, assigning the sum of thesefrequencies to the resulting tree. A priority queue data structure allows the algorithm toquickly �nd the subtrees to merge at each step.Data for the timing experiments was generated by choosing integer frequencies uniformlyfrom the range [0; 100000]. Timing results are based on �fty executions for each input size.Size Basic Algorithm First Execution Second Execution Speedup Percent(Also Generates Trail) (Uses Trail) Savings5000 0.38 0.41 0.14 2.71 27.6310000 0.83 0.87 0.29 2.86 30.1220000 1.79 1.90 0.61 2.93 29.8950000 4.93 5.30 1.53 3.22 30.73100000 10.75 11.47 3.12 3.45 32.14150000 16.70 17.87 4.66 3.58 32.54Table 5: Hu�man Tree9.3 Shortest PathGiven a graph with non-negative edge weights and a source vertex, we wish to �nd theshortest paths from the source vertex to each of the other vertices. This is another classicproblem and has been examined extensively in the literature. Our approach is applied toDijkstra's algorithm.Dijkstra's algorithm is a greedy algorithm. At each step, there exists a set of vertices S towhich shortest paths are known, and a set T of vertices adjacent to members of this set. Thebest paths known to members of T are examined, and the vertex v, with the minimum pathlength is removed from T and added to S. A data structure that supports insert, delete,and deletemin can be used to implement this algorithm.Input graphs of jV j vertices and jEj edges were generated by choosing a set of jEj distinctedges uniformly from all possible such sets, then rejecting graphs that were not connected.jEj was chosen su�ciently large that each selection is connected with high probability, re-sulting in few rejections. The input sizes were chosen to keep the ration jEj=jV j constant,for in practice the running time of the algorithm is a�ected by this ratio. Timing results arebased on �fty executions at each input size. The size column of Table 6 contains an orderedpair indicating the number of vertices and edges.9.4 SkylineGiven a set of rectangles with with collinear bottom edges, the skyline is the �gure resultingfrom removing all hidden edges. The problem of computing the skyline of a set of rectangular26

www.manaraa.com

Size Basic Algorithm First Execution Second Execution Speedup Percent(Also Generates Trail) (Uses Trail) Savings500,5000 0.38 0.41 0.22 1.73 17.111000,10000 0.86 0.91 0.45 1.91 20.931500,15000 1.39 1.48 0.69 2.01 21.942000,20000 1.94 1.97 0.90 2.16 26.03Table 6: Shortest Pathbuildings by eliminating hidden lines is discussed in [15]. The method used is divide andconquer and it constructs a skyline in O(n log(n)) time. In this paper we use a plane sweepalgorithm that can be easily implemented in terms of operations on priority queues. Planesweep algorithms are widely used for computational geometry problems [16], and typicallyuse a priority queue for event scheduling, and may be amenable to use of certi�cation trailtechniques.Using a plane sweep algorithm, we compute the skyline as follows. Initialize a verticalsweep line to the left of all the rectangles (we may assume that all rectangle are to the rightof the y-axis). As we sweep the line to the right we maintain a collection of the heights ofthe rectangles encountered. For each rectangle R, the height of R is added to the collectionwhen we encounter R's left edge and removed when we encounter its right edge. The heightof the skyline at any point x0, is the maximum height in the collection when the sweepline isat x = x0. Details are given below. A structure supporting insert and deletemin is all thatis needed to order the events, and a structure supporting insert, max, and delete is requiredto store the rectangle heights. A priority queue (supporting insert and can be used to orderthe sweepline events, and a generalized priority queue to store the rectangle heights.Input data was generated by choosing integral rectangle heights uniformly over the range[0; 100000]. The x-coordinates of the left edges were chosen uniformly over the range[0; 90000] and the width of each rectangle was chosen uniformly over the range [1; 10000].Timing results are based on twenty executions for each input size.Size Basic Algorithm First Execution Second Execution Speedup Percent(Also Generates Trail) (Uses Trail) Savings1000 0.25 0.27 0.11 2.27 24.002000 0.56 0.59 0.22 2.55 27.685000 1.71 1.79 0.58 2.95 30.7010000 3.86 4.01 1.17 3.30 32.9020000 8.39 8.76 2.36 3.56 33.7330000 13.29 14.02 3.55 3.74 33.90Table 7: Skyline27

www.manaraa.com

References[1] Adel'son-Vel'skii, G. M., and Landis, E. M., \An algorithm for the organization ofinformation", Soviet Math. Dokl., pp. 1259-1262, 3, 1962.[2] Anderson, T., and Lee, P., Fault tolerance: principles and practices, Prentice-Hall,Englewood Cli�s, NJ, 1981.[3] Andrews, D., \Software fault tolerance through executable assertions," Rec. 12th Asilo-mar Conf. Circuits, Syst., Comput., pp. 641-645, 1978, Nov. 6-8.[4] Andrews, D., \Using excutable assertions for testing and fault tolerance," Dig. 9thAnnu. Int. Symp. Fault Tolerant Comput., pp. 102-105, 1979, June 20-22.[5] Avizienis, A., \The N-version approach to fault tolerant software," IEEE Trans. onSoftware Engineering, vol. 11, pp. 1491-1501, Dec., 1985.[6] Bayer, R., and McCreight, E., \Organization of large ordered indexes", Acta Inform.,pp 173-189, 1, 1972.[7] Blum, M., and Kannan, S., \Designing programs that check their work", Proceedings ofthe 1989 ACM Symposium on Theory of Computing, pp. 86-97, ACM Press, 1989.[8] Chen, L., and Avizienis A., \N-version programming: a fault tolerant approach to relia-bility of software operation," Digest of the 1978 Fault Tolerant Computing Symposium,pp. 3-9, IEEE Computer Society Press, 1978.[9] Cormen, T. H., and Leiserson, C. E., and Rivest, R. L., Introduction to AlgorithmsMcGraw-Hill, New York, NY, 1990.[10] Fredman, M. L., and Saks, M. E., \The cell probe complexity of dynamic data struc-tures," Proc. 21st ACM Symp. on Theo. Comp. 1989, pp. 109-122, 2, 1986.[11] Gabow, H. N., and Tarjan, R. E., \A linear-time algorithm for a special case of disjointset union," J. of Comp. and Sys. Sci., 30(2), pp. 209-221, 1985.[12] Guibas, L. J., and Sedgewick, R., \A dichromatic framework for balanced trees", Pro-ceedings of the Nineteenth Annual Symposium on Foundations of Computing, pp. 8-21,IEEE Computer Society Press, 1978.[13] Hu�man, D., \A method for the construction of minimum redundancy codes", Proc.IRE, pp 1098-1101, 40, 1952.[14] Johnson, B., Design and analysis of fault tolerant digital systems Addison-Wesley, Read-ing, MA, 1989.[15] Manber U., Introduction to Algorithms: A Creative ApproachAddison-Wesley, Reading,MA, 1989. 28

www.manaraa.com

[16] Preparata F. P., and Shamos M. I., Computational geometry: an introduction, Springer-Verlag, New York, NY, 1985.[17] Randell, B., \System structure for software fault tolerance," IEEE Trans. on SoftwareEngineering, vol. 1, pp. 220-232, June, 1975.[18] Siewiorek, D., and Swarz, R., The theory and practice of reliable design, Digital Press,Bedford, MA, 1982.[19] Sullivan, G.F., and Masson, G.M., \Using certi�cation trails to achieve software faulttolerance," Digest of the 1990 Fault Tolerant Computing Symposium, pp. 423-431, IEEEComputer Society Press, 1990.[20] Sullivan, G.F., and Masson, G.M., \Certi�cation trails for data structures," Departmentof Computer Science Technical Report JHU 90/17, Johns Hopkins University, Baltimore,Maryland, 1990.[21] Tarjan, R. E., \E�ciency of a good but not linear set union algorithm," J. ACM, 22(2),pp. 215-225, 1975.[22] Tarjan, R. E., \A class of algorithms which require nonlinear time to maintain disjointsets," J. of Comp. and Sys. Sci., 18(2), pp. 110-127, 1979.[23] Tarjan, R. E., and Leeuwen, J. van, \Worst-case analysis of set union algorithms," J.ACM, 31(2), pp. 245-281, 1984.[24] Taylor, D., \Error Models for robust data structures," Dig. 20th Annu. Int. Symp. FaultTolerant Comput., pp. 416-422, 1990 June 26-28.[25] Williams, J. W. J, \Algorithm 232 (heapsort)," Commun. of ACM, vol.7, pp. 347-348,1964.
29

